

Mark Scheme (Results)

November 2023

Pearson Edexcel International GCSE In Physics (4PH1) Paper 2P

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2023 Question Paper Log Number P73429A Publications Code 4PH1_2P_MS_2311 All the material in this publication is copyright © Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer			Notes	Marks
1 (a)	all five rows correct = 3 marks 3-4 rows correct = 2 marks 1-2 rows correct = 1 mark		row both allo indi a tio	row cannot score if both boxes ticked allow any reasonable indication other than a tick	
	Statement	Nuclear fus	ion	Nuclear fission	
	happens in the cores of stars	\checkmark			
	happens when a nucleus absorbs a neutron			\checkmark	
	causes large nucleus to split			\checkmark	
	produces radioactive daughter nuclei			~	
	uses hydrogen to produce helium	\checkmark			
(b)	high temperature; (so that) nuclei will have high(er) speed or I { <u>kinetic</u> energy/ <u>K</u> E}; high pressure;	nigh(er)	igno repu attr cono ator nucl	ore references to ulsion or action done particles, ns, molecules for lei	4
	plus one from: • (so that nuclei will be) closer togeth • (so that nuclei are) more likely to c	ner / eq; ollide/ eq;	e.g. e.g. freq	closely packed collide more juently	

Total for Question 1 = 7 marks

	Question number	n -	Answer	Notes	Marks
2	(a)	(i)	substitution OR rearrangement; evaluation;		2
		(ii)	e.g. 19 = force × 0.55 OR force = moment/distance (force =) 35 (N) A (0.25 m):	allow 34.5, 34.54, etc. -1 POT error	1
		(,	B is incorrect because this is not a perpendicular distance C is incorrect because this is the distance between weight and force F D is incorrect because this is the distance to force F		
	(b)	(i)	force X has the shorter distance to the CoG; moments of two forces must be equal/eq; so force X must be larger;	Note: no credit for repeating question I.e. CoG is closer to support A condone reference to force A accept 'weight' for CoG allow RA i.e. (total) clockwise moment = (total) anti- clockwise moment DOP on either	3
		(ii)	force X force Y force X force Y force Y support A support B weight of lower leg any three from: force X decreases; force Y increases; change by the same amount; total force remains the same;	allow idea of change with distance is linear	3
			total force remains the same;		

Total for Question 2 = 9 marks

Question number		Answer	Notes	Marks
3 (a)	any fiv	re from:		6
	MP1.	idea of mass of water = [mass of water and cup] - [mass of cup];	accept zeroing balance with cup	
	MP2.	mass found on balance;	condone 'weighing scales' or 'scales' reject 'scale' allow 'measure volume of water with a measuring cylinder and multiply volume by density to find mass' for MP1 and MP2	
	MP3.	time measured on timer/stopwatch/stopclock;	accept idea of a fixed amount of time	
	MP4.	idea of finding temperature change;	e.g. temp change = final temp - initial temp accept idea of a defined temperature change I.e. stop heating after a temp change of 20 degrees	
	MP5.	energy supplied = voltmeter reading × ammeter reading × time;	accept E = VIt accept use of joulemeter	
	MP6.	whole experiment repeated and averaged;	i.e. get several values of c	
	MP7. MP8.	water stirred (throughout); keep taking temperature after heater switched off for max temp;		
	MP9. MP10.	plot a graph of temperature against time; find gradient of temperature-time graph;		
	and o	ne from: use of equation "gradient = nower of heater /		
	MP12.	m × c" or re-arrangement; rearrangement of formula sheet equation; i.e. c = energy supplied/(m × temp change)		

(b) (i)	substitution into given formula; rearrangement; evaluation; e.g.	-1 POT error	3
	54000 = 0.56 × c × 22 c = 54000 / 0.56 × 22 (c =) 4400 (J/kg °C)	allow 4383 allow any reasonable rounding ignore rounding error after 3sf	
(ii)	any two from: MP1. heating of beaker/heating of thermometer;	ignore references to KE or sound allow idea of 'heat	2
	MP2. heating of surroundings/heating of insulation;	beaker/thermometer' allow idea of 'heat going to surroundings or insulaton'	
	MP3. insulation not perfect;	e.g. insulation conducts or radiates	
	MP4. hole(s) in lid for thermometer/heater leave gaps;	allow idea of heat 'escaping' through lid or via evaporation	

Total for Question 3 = 11 marks

Question number	Answer	Notes	Marks
4 (a)	substitution into given formula; rearrangement; evaluation; e.g. 16 = energy / 2.5 (× 3600) energy = 16 × 2.5 (× 3600) (energy =) 140 000 (J)	ignore units 2 marks max. if time not converted correctly to seconds e.g. 40 (J), 2400 (J) allow 144 000 (J) 2.5 × 60 × 60 or 9000 seen for 1 mark if no	3
		other mark awarded	
	 MP1. it steps up or steps down the voltage; MP2. current in (primary) coil produces magnetic field; MP3. current is changing/alternating; MP4. causing a (changing) magnetic field in the core; MP5. the core strengthens the magnetic field; MP6. idea that iron is a soft magnetic material I.e. can gain and lose its magnetism easily MP7. field lines interact with (secondary) coil; MP8. which induces a voltage in the secondary coil; MP9. transformer won't work with (steady) d.c.; 	allow "increases", "decreases" or "changes" e.g. making the core magnetised allow "concentrates" for "strengthens" idea of core linking the two coils with magnetic field condone "induces a current" ignore idea of "works with a.c." repetition of stem	0
(c)	less turns (on the primary coil) / eq;	ignore any reference to secondary ignore references to increasing current, power or voltage of the primary coil condone 'coils' for 'turns'	1

Total for Question 4 = 10 marks

	Quest numb	ion er	Answer	Notes	Marks
5	(a)		423 (K);	allow 423.15 (K), 423.16(K)	1
	(b)	(i)	B and D only;	both required	1
		(ii)	particles closer together in solid;	accept RA ignore motion references may be shown in a clear, titled diagram	2
			particles have fixed or regular arrangement in solid but irregular in gas;	may be shown in a clear, titled diagram	
		(iii)	 kinetic energy stays constant / eq; and any two from: temperature stays constant (during state change); (average) speed of particles does not change; (kelvin) temperature is (directly) proportional to (average) kinetic energy of particles; 		3

Total for Question 5 = 7 marks

	Questi numb	on er	Answer	Answer Notes	
6	(a)		idea that (total) momentum before = (total) momentum after (event);	ignore 'momentum is conserved'	1
	(b)	(i)	zero/0/nought/nothing;		1
		(ii)	recall of momentum = mass × velocity; substitution; evaluation;	allow standard symbols e.g. p = m × v -1 POT error	3
			e.g. p = mv $p = 2.6 \times 10^{-8} \times 26000$ $p = 6.8 \times 10^{-4} (kg m/s)$	allow 6.76 × 10 ⁻⁴	
		(iii)	6.8 × 10 ⁻⁴ (kg m/s); right;	allow ecf from (ii)	2
		(iv)	substitution into 'F=ma'; rearrangement; evaluation; answer given to 2s.f.; e.g. 2.6 $(\times 10^{-3})= 1.2 \times \text{acceleration}$ acceleration 2.6 $(\times 10^{-3}) / 1.2$ (acceleration =) 2.16 $\times 10^{-3}$ (m/s ²) (acceleration =) 2.2 $\times 10^{-3}$ (m/s ²)	ignore units -1 for POT error independent mark	4
	(c)		 any two from: MP1. idea of tiny amount of fuel 'consumed' per second; MP2. any attempt of calculation of time to run out of xenon seen; MP3. correct calculation of 7.575 × 10⁶ s; MP4. idea that 'burn' is for a long time; MP5. idea that low acceleration for long time gives high speed change; MP6. mass of spacecraft will be larger so acceleration is even smaller; 	ignore idea of simple yes/no accept 88 or 87.68 days, 2104 hours, 1.26 × 10 ⁵ minutes , 12.5 weeks, 0.24 years	2

Question number	Answer	Notes	Marks
7 (a)	microphone;		1
(b) (i)	determination of number of squares for one period; use of timebase to determine appropriate period in seconds;	allow 5.2 - 5.5 squares '5 x 0.002' or '0.01' scores 1 '8 x 0.002' or '0.016' scores 1 accept 0.0104 - 0.0110 (s) for 2 marks	2
	e.g. period = 8/1.5 = 5.3 squares period = (5.3 × 0.002 =) 0.011(s)		
(ii)	use of f = 1 / T to evaluate frequency;	allow ecf from (i)	1
	e.g. frequency = (1 / 0.011 =) 91 (Hz)	allow 90.9-96.2 (Hz)	
(C) (i)	energy (transferred) = charge × voltage;	allow rearrangements and standard symbols e.g E = Q × V allow W for energy ignore C for charge	1
(ii)	amplitude of signal in volts determined; evaluation of effective voltage; evaluation of energy transferred;	ecf amplitude in volts reject 6.3×10⁻⁵ / √2	3
	e.g. amplitude = 2 squares × 5 = 10 V effective voltage = 10 / \int 2 = 7.1 V energy transferred = (7.1 × 6.3 × 10 ⁻⁵ =) 4.5 × 10 ⁻⁴ (J)	-1 POT error allow 4.4×10 ⁻⁴ - 4.5×10 ⁻⁴ (J) 8.9 ×10 ⁻⁴ scores 2	

Total for Question 7 = 8 marks

Question number	Answer	Notes	Marks
8 (a)	X at 3 o'clock position on orbit by eye; direction star A star A star B	any indicative mark within a star's radius of the correct position	1
(b)	difference in wavelength: 11 (nm); all substitutions correct in formula; rearrangement; evaluation; $\Delta \lambda = 561 - 550 = 11 (nm)$ $11/550 = v / 3.0 \times 10^8$ $v = 11/550 \times 3.0 \times 10^8$ $(v =) 6.0 \times 10^6 (m/s)$	allow ecf from clear incorrect change in wavelength -1 POT error 5.88 × 10 ⁶ scores 3 marks (wrong lab wavelength) ignore references to direction	4

Total for Question 8 = 5 marks

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom